Effects of Stem Density and Reynolds Number on Fine Sediment Interception by Emergent Vegetation

Author:

Wingenroth JordanORCID,Yee Candace,Nghiem Justin,Larsen LaurelORCID

Abstract

Suspended sediment collected by vegetation in marshes and wetlands contributes to vertical accretion, which can buffer against rising sea levels. Effective capture efficiency (ECE), a parameter quantifying the fraction of incoming suspended particles directly captured by underwater vegetation surfaces, plays a key role in determining the significance of direct interception in morphodynamic models. The ways in which physical characteristics of collectors and transitionally turbulent flows affect ECE are not yet thoroughly understood. We conducted a set of 12 experiments at three flow velocities and three stem densities (plus equivalent zero-collector control experiments), plus four experiments where biofilm was allowed to accumulate. We determined that ECE decreases with increasing collector Reynolds number (study range: 66 to 200; p < 0.05 for two of three treatments) and increasing collector density (solid volume fraction: 0.22% to 1.17%; p < 0.05 for two of three treatments). Adding biofilm increased ECE in all cases, by a multiplicative factor ranging from 1.53 to 7.15 at different collector densities and biofilm growth durations. In some cases, the impact of biofilm on ECE far outweighed that of collector Reynolds number and density. By combining our data with those of one similar study, we present a preliminary model quantitatively assessing the effect of collector density on ECE.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3