The Gavorrano Monzogranite (Northern Apennines): An Updated Review of Host Rock Protoliths, Thermal Metamorphism and Tectonic Setting

Author:

Brogi AndreaORCID,Caggianelli AlfredoORCID,Liotta Domenico,Zucchi MartinaORCID,Spina Amalia,Capezzuoli EnricoORCID,Casini Alessandra,Buracchi Elena

Abstract

We review and refine the geological setting of an area located nearby the Tyrrhenian seacoast, in the inner zone of the Northern Apennines (southern Tuscany), where a Neogene monzogranite body (estimated in about 3 km long, 1.5 km wide, and 0.7 km thick) emplaced during early Pliocene. This magmatic intrusion, known as the Gavorrano pluton, is partially exposed in a ridge bounded by regional faults delimiting broad structural depressions. A widespread circulation of geothermal fluids accompanied the cooling of the magmatic body and gave rise to an extensive Fe-ore deposit (mainly pyrite) exploited during the past century. The tectonic setting which favoured the emplacement and exhumation of the Gavorrano pluton is strongly debated with fallouts on the comprehension of the Neogene evolution of this sector of the inner Northern Apennines. Data from a new fieldwork dataset, integrated with information from the mining activity, have been integrated to refine the geological setting of the whole crustal sector where the Gavorrano monzogranite was emplaced and exhumed. Our review, implemented by new palynological, petrological and structural data pointed out that: (i) the age of the Palaeozoic phyllite (hosting rocks) is middle-late Permian, thus resulting younger than previously described (i.e., pre-Carboniferous); (ii) the conditions at which the metamorphic aureole developed are estimated at a temperature of c. 660 °C and at a depth lower than c. 6 km; (iii) the tectonic evolution which determined the emplacement and exhumation of the monzogranite is constrained in a transfer zone, in the frame of the extensional tectonics affecting the area continuously since Miocene.

Funder

University of Perugia

European Community’s Seventh Framework Programme

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3