Abstract
It has long been considered that ferric phases stabilize organic matter (OM) in soils. Temporarily waterlogged soils, in which Fe is submitted to regular reductive solubilization and oxidizing precipitation, have often been used to study these processes. However, few studies have been interested in the evolution of the OM quality under such conditions. We therefore experimentally investigated the impact of a redox cycle on the quality of the dissolved organic matter (DOM) from wetland soil. The DOM quality was monitored using a combination of analyses run on the elements (%C, %N, C/N), isotopes (δ15N, δ13C), optical index (specific UV absorbance at 254 nm), and fluorescence indexes (FI, HIX, BIX). In addition, the cation and anion concentrations were also determined in the soil solutions throughout the experiment. As classically demonstrated, OM is solubilized as terrestrial aromatic molecules in the first stage of the reducing period, and then as nonaromatic molecules until the end of the reduction, in response to the dissimilatory reductive dissolution of Fe-oxyhydroxides in the soil. More interestingly, we demonstrate that the reintroduction of O2 involves significant lysis of reducing bacterial cells involving the production of small labile organic carbon which represents a significant pathway for OM degradation. Moreover, in response to the physical constraints, the newly formed Fe-OM precipitates produce small aggregates rich in aromatic OM that are expected to disseminate in the environment, representing a second significant way to remove OM.
Funder
Centre National de la Recherche Scientifique
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献