Using Geomembrane Liners to Reduce Seepage through the Base of Tailings Ponds—A Review and a Framework for Design Guidelines

Author:

Tuomela AnneORCID,Ronkanen Anna-KaisaORCID,Rossi Pekka M.,Rauhala AnssiORCID,Haapasalo HarriORCID,Kujala Kauko

Abstract

Geomembranes are used worldwide as basin liners in tailings ponds to decrease the permeability of the foundation and prevent further transportation of harmful contaminants and contaminated water. However, leakage into the environment and damage to the geomembrane have been reported. This paper reviews available literature and recommendations on geomembrane structures for use as a basal liner in tailings ponds, and presents a framework to achieve early involvement and an integrated approach to geomembrane structure design. Cohesive planning guidelines or legislative directions for such structures are currently lacking in many countries, which often means that the structure guidelines for groundwater protection or landfill are applied when designing tailings storage facilities (TSF). Basin structure is generally unique to each mine but, based on the literature, in the majority of cases the structure has a single-composite liner. The type of liner system used depends mainly on the material to be used on top of the structure, local hydraulic pressure gradient, and climate conditions. More practical information and scientific knowledge on the use of base liners in various cases are needed. A sustainable approach could be risk-based design, where the life cycle of the basin is taken into consideration. To this end, this paper proposes geomembrane-lined tailings pond to be assessed as a stakeholder. Emphasis on this, early enough, can ensure critical factors for tailings ponds to be considered from the outset in the design of mines and reduces the environmental footprint of the mining industry. More holistic project management and early involvement and integration are recommended to improve construction quality during the entire life cycle of the pond. In the long term, use of dry stacking or other alternative methods should be encouraged, despite the higher costs for operators.

Funder

K. H Renlunds foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3