Flume Experiments on Flow Analysis and Energy Reduction through a Compound Tsunami Mitigation System with a Seaward Embankment and Landward Vegetation over a Mound

Author:

Rahman Md Abedur,Tanaka Norio,Rashedunnabi A. H. M.

Abstract

As a countermeasure against tsunami inundation, the present study conducted a series of laboratory experiments using a compound mitigation system in which a seaward embankment (E) followed by landward coastal vegetation (V) over a mound (M) (EMV) was investigated in supercritical flow conditions. The changes of flow around the mitigation system and energy reduction were clarified under varying conditions of mound height and vegetation density. Cases of an embankment followed by only a mound (EMNV) were also considered for comparison. Experimental results showed that three basic types of flow structures were observed within the mitigation system in EMV cases. A water cushion was created within the mitigation system mainly due to the combined effects of the mound and vegetation. It significantly reduced the maximum total energy in EMV cases by approximately 41–66%, whereas in EMNV cases, the maximum energy reduction was found to be 23–65%. Increments in both mound height and vegetation density increased the intensity of the water cushion within the mitigation system by offering more drag and reflecting the flow, and hence, significantly reduced the energy of the flow.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3