Asbestos Bodies in Human Lung: Localization of Iron and Carbon in the Coating

Author:

Croce Alessandro12ORCID,Gatti Giorgio3ORCID,Calisi Antonio2ORCID,Cagna Laura2,Bellis Donata4ORCID,Bertolotti Marinella1,Rinaudo Caterina2ORCID,Maconi Antonio5ORCID

Affiliation:

1. SSD Research Laboratories, Research Training Innovation Infrastructure, Research and Innovation Department (DAIRI), Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e Cesare Arrigo, Via Venezia 16, 15121 Alessandria, Italy

2. Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121 Alessandria, Italy

3. Department for Sustainable Development and Ecological Transition, Piazza S. Eusebio 5, 13100 Vercelli, Italy

4. Centre “G. Scansetti” Via Pietro Giuria 9, 10100 Turin, Italy

5. Research Training Innovation Infrastructure, Research and Innovation Department (DAIRI), Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e Cesare Arrigo, Via Venezia 16, 15121 Alessandria, Italy

Abstract

Asbestos is a term that includes six fibrous mineral phases related to different lung diseases, including asbestosis, lung cancer, and Malignant Pleural Mesothelioma (MPM). Since the last century, these minerals have been widely studied under their mineralogical/chemical and physical aspects with in vivo and in vitro studies to understand the mechanisms of their carcinogenicity. There are several techniques described in the literature, as optical and electron microscopies, for the identification of coated (asbestos bodies, ABs) and uncoated fibers, but only micro-Raman spectroscopy permits a sure characterization of these minerals—and of the related phases—directly in the histological sections of pulmonary parenchyma without any manipulation. In this case, the risk of the loss of associated inorganic phases from asbestos bodies (ABs) and fibers (e.g.: iron or carbonaceous micro-particles) is avoided. Asbestos bodies are produced by the activity of alveolar macrophages with degradation/inactivation of asbestos fibers. Inside the alveolar macrophages, organic and inorganic material settles on the foreign fibers forming an iron-rich proteic and carbonaceous coating. In this study, Variable Pressure Scanning Electron Microscopy with annexed Electron Dispersive Spectroscopy (VP-SEM/EDS) and micro-Raman spectroscopy were applied to the characterization of the phases in the ABs. Characterization of carbonaceous materials (CMs), observed in pristine asbestos phases in previous works, was therefore performed, addressing the micro-Raman laser beam on different points of the asbestos bodies, and Raman mappings on ABs were carried out for the first time. Coupling the data obtained by VP-SEM/EDS and micro-Raman spectroscopy, it was possible to collect information about the iron and carbonaceous phases adhered to the fibers, probably lost during the classical tissue digestion procedures. Information about both mineral and carbonaceous components might be useful to understand the whole structure of “asbestos bodies” and the inflammogenic and carcinogenic effects of the asbestos phases coupled to CMs, that might derive from cigarette smoke or from environmental pollution; this study might be useful to deepen also the possible detrimental role of ABs in the tissues.

Publisher

MDPI AG

Reference60 articles.

1. International Agency for Research on Cancer (IARC) (2012). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, IARC.

2. Italian Government (1991). Legislative Decree No. 277 of 15 August 1991, Implementing EU Directives No. 80/1107/EEC, No. 82/605/EEC, No. 83/477/EEC, No. 86/188/EEC, and No. 88/642/EEC, on the Protection of Workers from the Risks Related to Exposure to Chemical, Physical and Biological Agents at Work, Gazzetta Ufficiale Supplemento Ordinario No. 200.

3. Nomenclature of the amphibole supergroup;Hawthorne;Am. Mineral.,2012

4. Nomenclature of amphiboles: Report of the Subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names;Leake;Can. Mineral.,1997

5. The characterization of serpentine minerals by X-ray diffraction;Whittaker;Mineral. Mag.,1956

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3