Understanding Sediment Dynamics at a Shipwreck Site Using CFD Modelling

Author:

Littler GaryORCID,Coughlan MarkORCID,Majcher Jan,Keenahan JenniferORCID

Abstract

Shipwrecks are important cultural heritage sites offshore. In many instances, given their often long-term emplacement on the seafloor, they offer natural laboratories to study complex interactions between human-induced obstacles and seabed dynamics. Such interactions and induced sediment mobility also pose significant threats to offshore engineering infrastructure, such as turbine monopile foundations. Traditional methods can struggle to capture the nuance of these processes, with real-world surveys measuring effects only after installation, and laboratory models suffering from scale-down inaccuracies. Computational fluid dynamics (CFD) modelling offers an effective means of investigating the effects of obstacles on seabed dynamics, and by using shipwrecks as proxies for infrastructure, it can utilize long-term datasets to verify its predictions. In this study, high-resolution temporal bathymetric data were used in, and to verify, CFD modelling to investigate the interactions between hydro- and sediment dynamics at a shipwreck site in a tidally dominated wreck site. From this comparison, simulations of bed shear stress and scalar transport correlate well with known areas of erosion and deposition, serving as a basis for future scour prediction studies and creating effective tools in offshore renewable infrastructure planning and de-risking.

Funder

Geological Survey Ireland

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3