Shoreline Evolution and Erosion Vulnerability Assessment along the Central Adriatic Coast with the Contribution of UAV Beach Monitoring

Author:

Di Paola GianluigiORCID,Minervino Amodio AntonioORCID,Dilauro Grazia,Rodriguez Germàn,Rosskopf Carmen M.ORCID

Abstract

Coastal erosion and its impacts on the involved communities is a topic of great scientific interest that also reflects the need for modern as well as cost and time-effective methodologies to be integrated into or even to substitute traditional investigation methods. The present study is based on an integrated approach that involves the use of data derived from UAV (Unmanned Aerial Vehicle) surveys. The study illustrates the long- to short-term shoreline evolution of the Molise coast (southern Italy) and then focuses on two selected beach stretches (Petacciato and Campomarino beaches), for which annual UAV surveys were performed from 2019 to 2021, to assess their most recent shoreline and morpho-topographical changes and related effects on their coastal vulnerability. UAV data were processed using the Structure from Motion (SfM) image processing tool. Along the beach profiles derived from the produced DEMs, the coastal vulnerability of the selected beach stretches was evaluated by using the Coastal Vulnerability Assessment (CVA) approach. The results obtained highlight some significant worsening of CVA indexes from 2019 to 2021, especially for the Campomarino beach, confirming the importance of the periodic updating of previous data. In conclusion, the easy use of the UAV technology and the good quality of the derived data make it an excellent approach for integration into traditional methodologies for the assessment of short-term shoreline and beach changes as well as for monitoring coastal vulnerability.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference46 articles.

1. Coastal processes and landforms

2. Introduction to Coastal Processes & Geomorphology;Masselink,2011

3. Beach Morphodynamics;Short,2020

4. Coastal systems and low-lying areas;Nicholls,2007

5. The Natural Resilience of Coastal Systems: Primary Concepts;Woodroffe,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3