Abstract
In the last two decades, both the amount and quality of geoinformation in the geosciences field have improved substantially due to the increasingly more widespread use of techniques such as Laser Scanning (LiDAR), digital photogrammetry, unmanned aerial vehicles, geophysical reconnaissance (seismic, electrical, geomagnetic), and ground-penetrating radar (GPR), among others. Furthermore, the advances in computing, storage and visualization resources allow the acquisition of 3D terrain models (surface and underground) with unprecedented ease and versatility. However, despite these scientific and technical developments, it is still a common practice to simplify the 3D data in 2D static images, losing part of its communicative potential. The objective of this paper is to demonstrate the possibilities of extended reality (XR) for communication and sharing of 3D geoinformation in the field of geosciences. A brief review of the different variants within XR is followed by the presentation of the design and functionalities of headset-type mixed reality (MR) devices, which allow the 3D models to be investigated collaboratively by several users in the office environment. The specific focus is on the functionalities of Microsoft’s HoloLens 2 untethered holographic head mounted display (HMD), and the ADA Platform App by Clirio, which is used to manage model viewing with the HMD. We demonstrate the capabilities of MR for the visualization and dissemination of complex 3D information in geosciences in data rich and self-directed immersive environment, through selected 3D models (most of them of the Montserrat massif). Finally, we highlight the educational possibilities of MR technology. Today MR has an incipient and reduced use; we hope that it will gain popularity as the barriers of entry become lower.
Subject
General Earth and Planetary Sciences
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献