3D Bayesian Inversion of Potential Fields: The Quebec Oka Carbonatite Complex Case Study

Author:

Sampietro DanieleORCID,Capponi Martina,Maurizio Gerardo

Abstract

Potential fields methods, based on the exploitation of gravity and magnetic fields, are among the most important methods to recover fundamental information on the Earth crust structure at global, regional and local scales. The bottleneck for this kind of geophysical methods is often represented by the development of ad-hoc techniques to fully exploit the available data. In fact, each different technique can observe the effect of a single property of the subsurface and when we want to estimate this property from the observed field (the so-called inverse problem), several problems such as non-uniqueness and instability arise. A possible solution to these problems consists in jointly inverting, in a consistent way, different observed fields, possibly also incorporating all the available geological constraints. In the current work, we present an innovative Bayesian algorithm aimed at performing a full 3D joint inversion of gravity and magnetic fields constrained by geological a-priori qualitative information. The algorithm is tested on a real-case scenario, namely, a local study to estimate a complete 3D model of the Oka carbonatite complex. This complex is a composite pluton in Quebec (Canada), important for mining operations related to critical raw material such as Niobium and other rare earth. This example shows the reliability of the developed inversion algorithm and gives hints on the fundamental role that potential fields can play in mining activities.

Funder

European Space Agency

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference39 articles.

1. Uniqueness theorems for inverse gravimetric problems;Sampietro,2012

2. Up and down through the gravity field;Sansò;Handbuch der Geodäsie,2018

3. Analysis of the Gravity Field: Direct and Inverse Problems;Sansó,2021

4. 3-D inversion of magnetic data

5. 3-D inversion of gravity data

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3