Geoelectrical Measurements to Monitor a Hydrocarbon Leakage in the Aquifer: Simulation Experiment in the Lab

Author:

Capozzoli LuigiORCID,Giampaolo ValeriaORCID,Martino Gregory De,Gomaa Mohamed M.ORCID,Rizzo EnzoORCID

Abstract

Hydrocarbons represent one of the most dangerous sources of contamination for environmental resources. Petroleum contaminants released from leaking fuel storage tanks or accidental spillages represent serious worldwide problems. Knowledge of the contaminant distribution in the subsoil is very complex, and direct measurements, such as boreholes or drillings, are strongly required. Even if the direct measurements define accurate information, on the contrary, they have low spatial coverage. Geophysics can effectively support conventional methods of subsoil sampling by expanding the information obtainable, providing to analyze, with higher resolution, larger areas of investigation. Consequently, different geophysical techniques have been used to detect the presence and distribution of hydrocarbons in the subsurface. Electrical resistivity tomography is an efficient geophysical methodology for studying hydrocarbon contamination. Indeed, this methodology allows for the reduction of the number of drillings or soil samples, and several papers described its success. One of the advantages is the possibility to successfully perform analyses in time-lapse to identify the degradation of the contaminants. Indeed, natural attenuation of hydrocarbon contaminants is observed under aerobic conditions due to biodegradation, which should be the principal phenomenon of physical variations of the subsoil. Therefore, a laboratory experiment was conducted in a sandbox to simulate a spillage of common diesel occurring in the vadose zone. The sandbox was monitored for a long period (1 year, approximately) using time-lapse cross borehole electrical resistivity tomographies. Results highlight the usefulness of in-hole electrical tomography for characterizing underground hydrocarbon leakage and the variability of the subsurface physical behavior due to contaminant degradation. Therefore, the experiment demonstrates how the electrical method can monitor the biodegradation processes occurring in the subsoil, defining the possibility of using the methodology during remediation activities.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3