Developing an Approximation of a Natural, Rough Gravel Riverbed Both Physically and Numerically

Author:

Stubbs AlexORCID,Stoesser Thorsten,Bockelmann-Evans Bettina

Abstract

Near-bed and pore space turbulent flows are beginning to be understood using new technologies and advances in direct numerical simulation (DNS) and large-eddy simulation (LES) techniques. However, the riverbed geometry that is used in many computational studies remains overly simplistic. Thus, this study presents the development of an artificial representation of a gravel riverbed matrix, and the assessment of how well it approximates a natural riverbed. A physical model of a gravel riverbed matrix that was 120 mm deep, 300 mm wide, and 2.048 m long was manufactured from cast acrylic. Additionally, a numerical approximation of the physical model was created and used for analysis. The pore matrix of the artificial riverbed was found to be comparable to that of a natural gravel riverbed in terms of its porosity and void ratio. The diameters of the artificial riverbed’s surface particles were found to vary less, with fewer irregularities, than those found for natural gravel riverbeds; yet, they were normally distributed similarly to natural riverbeds. A power spectral density function showed that the artificial riverbed exhibited a degree of roughness that was much lower than that found in nature. Thus, the hydraulic resistance and friction factor will both be lower than desired. These findings suggest that the novel methods that have been developed in this study can offer both the physical and numerical approximation of a gravel bed surface that is comparable to a natural gravel riverbed with low surface roughness, reduced particle size variance, and typical particle distribution and porosity.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3