Pixel-MPS: Stochastic Embedding and Density-Based Clustering of Image Patterns for Pixel-Based Multiple-Point Geostatistical Simulation

Author:

Asadi Adel12ORCID,Chatterjee Snehamoy1ORCID

Affiliation:

1. Department of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI 49931, USA

2. Department of Earth and Planetary Sciences, Stanford University, Stanford, CA 94305, USA

Abstract

Multiple-point geostatistics (MPS) is an established tool for the uncertainty quantification of Earth systems modeling, particularly when dealing with the complexity and heterogeneity of geological data. This study presents a novel pixel-based MPS method for modeling spatial data using advanced machine-learning algorithms. Pixel-based multiple-point simulation implies the sequential modeling of individual points on the simulation grid, one at a time, by borrowing spatial information from the training image and honoring the conditioning data points. The developed methodology is based on the mapping of the training image patterns database using the t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm for dimensionality reduction, and the clustering of patterns by applying the Density-based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, as an efficient unsupervised classification technique. For the automation, optimization, and input parameter tuning, multiple stages are implemented, including entropy-based determination of the template size and a k-nearest neighbors search for clustering parameter selection, to ensure the proposed method does not require the user’s interference. The proposed model is validated using synthetic two- and three-dimensional datasets, both for conditional and unconditional simulations, and runtime information is provided. Finally, the method is applied to a case study gold mine for stochastic orebody modeling. To demonstrate the computational efficiency and accuracy of the proposed method, a two-dimensional training image with 101 by 101 pixels is simulated for 100 conditional realizations in 453 s (~4.5 s per realization) using only 361 hard data points (~3.5% of the simulation grid), and the resulting average simulation has a good visual match and only an 11.8% pixel-wise mismatch with the training image.

Funder

Michigan Technological University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3