Rock Magnetism and Magnetic Fabric Study of the Icelandite and Rhyodacite Long Volcanic Sequence at Mauna Kuwale, Wai’anae Volcano, Oahu, Hawaii, USA

Author:

Herrero-Bervera Emilio1,Moreira Mario23ORCID

Affiliation:

1. School of Ocean & Earth Science & Technology (SOEST), Hawaii Institute of Geophysics and Planetology, University of Hawaii at Manoa, Honolulu, HI 96822, USA

2. Instituto Superior de Engenharia de Lisboa (ISEL), Instituto Politecnico de Lisboa, 1959-007 Lisboa, Portugal

3. Instituto Dom Luiz (IDL), Facultade de Ciencias, Universidade de Lisboa, 1749-016 Lisboa, Portugal

Abstract

In order to understand further the emplacement (i.e., volcanic growth) of 22 Icelandite and 3 Rhyodacite cooling units in one of the long volcanic sequences known as Mauna Kuwale of the Wai’anae volcano (ca. 3.3 Ma), Oahu Hawaii we have conducted appropriate rock magnetic experiments described below as well as anisotropy of magnetic susceptibility (AMS) studies of such 25 units. We have undertaken rock magnetic investigations such as continuous and partial thermo-magnetic cycles of low field magnetic susceptibility versus temperature dependence, (k-T) curves experiments. We classified the k-T heating-cooling dependence of susceptibility in three groups A, B and C. Type A: yielded two components of titano-magnetite with a predominat Ti rich phase and occasionally a relevant magnetite component phase. Type B: samples are characterized by Ti poor magnetites. Magnetite dominates as the main magnetic carrier. Type C: k-T curves show one single phase of titanomagnetite, and Ti poor magnetite. The coercivity or remanence, determined by back field magnetization is always <60 mT, which suggest the predominance of magnetic components of low coercivity, like magnetite. Usually, two coercivity components are identified in the specimens. In addition we also conducted magnetic granulometry analyses on 27 specimens to determine the domain state of the flows. The ratio of hysteresis parameters (Mr/Mrs versus Hcr/Hc) show that overall samples fall in the Pseudo-Single Domain (PSD) region with high values of Mr/Mrs and very low values of Hcr/Hc. Only two samples from cooling units 17 and specially 22 show a Single Domain (SD) magnetic behavior and a sample from one unit approaches the SD-MD mixture region. We measured the magnetic susceptibility of all cooling units and we found out that in all analyzed units the magnetic susceptibility is low 13.7 ± 8.8 (10−3 SI). Magnetic anisotropy/magnetic fabric is used as a tool in rock fabric analyses to investigate the preferred orientation of magnetic minerals in rocks. Magnetic anisotropy is low on all (measured) flows from the Icelandite cooling units from 1 to 17 (mean P’ = 1.010), but becomes noticeably distinct and high in rhyodacite cooling units 23, 24 and 25 (mean P’ = 1.074). Four units show a magnetic fabric with k3 axes vertical to sub-vertical which may be denoted as normal for the horizontal to sub horizontal units. Two Icelandite cooling units display oblate shapes and two other cooling units triaxial shapes. K1 axes are horizontal but point in different directions, i.e., NE and NW. Remaining cooling units show different magnetic fabric. Units 17, 23, 24 and 25, despite important variations in anisotropy (low for units 25 and high for units 23 and 24) and shape of ellipsoid (oblate in cooling unit 23, prolate in 24 and triaxial in 25) the k3 axes show the same orientation, SW to SSW dipping around 45° and a very steady magnetic lineation azimuth NW nearly horizontal to sub horizontal. The magnetic mineralogy and magnetic fabric indicate that both the Icelandite and Rhyodacite cooling units the magmatic evolution during the shield stage of the entire Wai’anae volcano and that such growth was not affected by tectonic deformation.

Funder

SOEST-HIGP of the University of Hawaii at Manoa and by National Science Foundation grants

Portuguese Fundação para a Ciencia e a Tecnologia (FCT) I.P./MCTES through national funds

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3