An Inversion Method for Surrounding Rock Parameters of Tunnels Based on a Probabilistic Baseline Model under a Constructional Environment

Author:

Shi Chenpeng1,Yan Xiaokun23,Yang Jianxing2,Liu Yang2ORCID

Affiliation:

1. Qingdao High-Speed Group Co., Ltd., Qingdao 266100, China

2. School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China

3. Guoneng Shuohuang Railway Development Co., Ltd., Beijing 100000, China

Abstract

The uncertainty of surrounding rock parameters varies due to changes in the boundary conditions of the tunnel model, and no suitable method to ensure that the updated parameters of the finite element model (FEM) are applicable throughout the constructional environment. To address this issue, a probabilistic baseline model method was introduced to invert the rock parameters and obtain values suitable for the complete constructional environment. First, the probabilistic statistical theory was applied to statistically analyze the measurement data from tunnels under different constructional environments, which provides insight into the variation in rock parameters. Then, an objective optimization function based on a genetic algorithm (GA) was constructed to optimize the accuracy by minimizing the error between the measurement data and the simulation data. Next, a Kriging model was built that utilized Young’s modulus and cohesion as updated parameters. This approach contributes to overcoming the inefficiency of multi-objective optimization computations. By using the Kriging model, optimal values for the rock parameters were obtained. Finally, the effectiveness and applicability of the proposed method were validated by comparing the measured data with the updated model data under different constructional environments.

Funder

Science and Technology Innovation Project of the National Energy Shuohuang Railway

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3