Electromagnetic Emissions from Quartz Subjected to Shear Stress: Spectral Signatures and Geophysical Implications

Author:

Martinelli GiovanniORCID,Plescia PaoloORCID,Tempesta Emanuela

Abstract

Shear tests on quartz rocks and single quartz crystals have been conducted to understand the possible relationship between the intensity of detectable stress in fault areas and the energy released in the form of electromagnetic waves in the range 30 KHz-1 MHz (LF–MF). For these tests, a new type of piston-cylinder has been developed, instrumented to collect the electromagnetic signals generated by the quartz during shear stress tests and that allows energy measurements on electromagnetic emissions (EMR) to be performed. The data obtained indicate that shear-stressed quartz crystals can generate electromagnetic emissions in the LF–MF range. These emissions represent a tiny fraction of the total energy dissipated in the fracturing process. The spectrum of radio emissions consists of continuous radiation and overlapping peaks. For the first time, a characteristic migration of peak frequencies was observed, proportional to the evolution of the fracturing process. In particular, the continuous recording of the radio emission spectra shows a migration of the peaks toward higher frequencies, as stress continues over time and smaller and larger fractures form. This migration could be used to distinguish possible natural signals emitted by quartz in tectonically active environments from possible signals of other geophysical and possibly anthropogenic origin.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3