Regional Flood Frequency Analysis Using An Artificial Neural Network Model

Author:

Kordrostami Sasan,Alim Mohammad AORCID,Karim Fazlul,Rahman AtaurORCID

Abstract

This paper presents the results from a study on the application of an artificial neural network (ANN) model for regional flood frequency analysis (RFFA). The study was conducted using stream flow data from 88 gauging stations across New South Wales (NSW) in Australia. Five different models consisting of three to eight predictor variables (i.e., annual rainfall, drainage area, fraction forested area, potential evapotranspiration, rainfall intensity, river slope, shape factor and stream density) were tested. The results show that an ANN model with a higher number of predictor variables does not always improve the performance of RFFA models. For example, the model with three predictor variables performs considerably better than the models using a higher number of predictor variables, except for the one which contains all the eight predictor variables. The model with three predictor variables exhibits smaller median relative error values for 2- and 20-year return periods compared to the model containing eight predictor variables. However, for 5-, 10-, 50- and 100-year return periods, the model with eight predictor variables shows smaller median relative error values. The proposed ANN modelling framework can be adapted to other regions in Australia and abroad.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3