Author:
Borup Morten,Madsen Henrik,Grum Morten,Mikkelsen Peter
Abstract
To prevent online models diverging from reality they need to be updated to current conditions using observations and data assimilation techniques. A way of doing this for distributed hydrodynamic urban drainage models is to use the Ensemble Kalman Filter (EnKF), but this requires running an ensemble of models online, which is computationally demanding. This can be circumvented by calculating the Kalman gain, which is the governing matrix of the updating, offline if the gain is approximately constant in time. Here, we show in a synthetic experiment that the Kalman gain can vary by several orders of magnitude in a non-uniform and time-dynamic manner during surcharge conditions caused by backwater when updating a hydrodynamic model of a simple sewer system with the EnKF. This implies that constant gain updating is not suitable for distributed hydrodynamic urban drainage models and that the full EnKF is in fact required.
Subject
General Earth and Planetary Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献