Analysis of Deformation and Erosion during CME Evolution

Author:

Hosteaux Skralan,Chané Emmanuel,Poedts StefaanORCID

Abstract

Magnetised coronal mass ejections (CMEs) are quite substantially deformed during their journey form the Sun to the Earth. Moreover, the interaction of their internal magnetic field with the magnetic field of the ambient solar wind can cause deflection and erosion of their mass and magnetic flux. We here analyse axisymmetric (2.5D) MHD simulations of normal and inverse CME, i.e., with the opposite or same polarity as the background solar wind, and attempt to quantify the erosion and the different forces that operate on the CMEs during their evolution. By analysing the forces, it was found that an increase of the background wind density results in a stronger plasma pressure gradient in the sheath that decelerates the magnetic cloud more. This in turn leads to an increase of the magnetic pressure gradient between the centre of the magnetic cloud and the separatrix, causing a further deceleration. Regardless of polarity, the current sheet that forms in our model between the rear of the CME and the closed field lines of the helmet streamer, results in magnetic field lines being stripped from the magnetic cloud. It is also found that slow normal CMEs experience the same amount of erosion, regardless of the background wind density. Moreover, as the initial velocity increases, so does the influence of the wind density on the erosion. We found that increasing the CME speed leads to a higher overall erosion due to stronger magnetic reconnection. For inverse CMEs, field lines are not stripped away but added to the magnetic cloud, leading to about twice as much magnetic flux at 1 AU than normal CMEs with the same initial flux.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3