Multi-Parameter Observations of Seismogenic Phenomena Related to the Tokyo Earthquake (M = 5.9) on 7 October 2021

Author:

Hayakawa Masashi,Schekotov AlexanderORCID,Izutsu JunORCID,Yang Shih-SianORCID,Solovieva Maria,Hobara Yasuhide

Abstract

Multi-parameter observations, powerful for the study of lithosphere–atmosphere–ionosphere coupling (LAIC), have been performed for a recent Tokyo earthquake (EQ) with a moderate magnitude (M = 5.9) and rather larger depth (~70 km) on 7 October 2021, in the hope of predicting the next Kanto (Tokyo) huge EQ, such as the 1923 Great Kanto EQ (with a magnitude greater than 7). Various possible precursors have been searched during the two-month period of 1 September to 31 October 2021, based on different kinds of data sets: (i) ULF (ultra-low frequency) magnetic data from Kakioka, Japan, (ii) ULF/ELF (extremely low frequency) magnetic field data from the Chubu University network, (iii) meteorological data (temperature and humidity) from the Japan Meteorological Agency (JMA), (iv) AGW (atmospheric gravity wave) ERA5 data provided by the European Centre for Medium-Range Weather Forecast (ECMWF), (v) subionospheric VLF/LF (very low frequency/low frequency) data from Russia and Japan, (vi) ionosonde Japanese data, and (vii) GIM (global ionosphere map) TEC (total electron content) data. After extensive analyses of all of the above data, we have found that there are a few obvious precursors: (i) ULF/ELF electromagnetic radiation in the atmosphere, and (ii) lower ionospheric perturbations (with two independent tools from the ULF depression and subionospheric VLF anomaly) which took place just two days before the EQ. Further, ULF/ELF atmospheric electromagnetic radiation has been observed from approximately one week before the EQ until a few days after the EQ, which seems to be approximately synchronous in time to the anomalous variation in meteorological parameters (a combination of temperature and humidity, atmospheric chemical potential). On the other hand, there have been no clear anomalies detected in the stratospheric AGW activity, and in the NmF2 and TEC data for the upper F region ionosphere. So, it seems that the lithospheric origin is not strong enough to perturb the upper F region. Finally, we discuss the possible hypothesis for the LAIC process, and we can conclude that the AGW hypothesis might be ruled out, but other possible channels such as the chemical channel (radon emanation) and the associated effects might be in operation, at least, for this Tokyo EQ.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference83 articles.

1. Earthquake Prediction Studies in Japan;Hayakawa,2018

2. 1923 Great Kantō Earthquake https://:en.wikipedia.org/wiki1923_kanto_earthquake

3. Ionospheric Precursors of Earthquakes;Pulinets,2004

4. Seismo Electromagnetics and Related Phenomena: History and Latest Results;Molchanov,2008

5. Earthquake Prediction with Radio Techniques;Hayakawa,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3