Evaluation of Zeolite as a Potential Reactive Medium in a Permeable Reactive Barrier (PRB): Batch and Column Studies

Author:

Rocha Liana Carolina CarvalhoORCID,Zuquette Lazaro ValentinORCID

Abstract

The purpose of this work is to evaluate the capacity of a natural zeolite to be used as a reactive material in a permeable reactive barrier (PRB) to remove inorganic contaminants from groundwater. To this aim, zeolite samples were subjected to characterization tests, column experiments, batch tests and a flushing process to evaluate the adsorption and desorption capacities of the zeolite. In the column experiments, the samples were subjected to eight successive cycles involving the percolation of a potassium aqueous solution (1500 mg/L) and a subsequent flushing process with water. Batch tests were conducted by mixing 20 g of zeolite with 100 mL of single-element aqueous solutions of K and Zn with concentrations of 200 mg/L. The results indicate that the zeolite rock is composed predominantly of clinoptilolite species and has a Si/Al ratio of 6.8, a high cationic exchange capacity (CEC) of 180 cmolc/kg and a high K+ adsorption rate with a removal efficiency of 78%. The adsorption isotherms of the zeolite follow the Langmuir model and are well fit by a pseudo-second-order kinetic model showing a high correlation coefficient (r2 > 0.999) for both K+ and Zn2+ cations. Additionally, the contaminant transport parameters for K+ ions (Rd = 24.9; Dh = 1.32 × 10–2 cm2/s and α = 1.42) reveal that the zeolite is resistant to the dispersion of ions in the barrier, indicating that the material has advantageous characteristics for use in a PRB. However, the flushing process of the material is not efficient, indicating that the appropriate use of the zeolite is in clean-up systems in which the adsorbent material can be exchanged after losing its efficiency as a reactive barrier.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference82 articles.

1. Caffeine as a chemical tracer for contamination of urban rivers

2. Marine Sediments from a Contaminated Site: Geotechnical Properties and Chemo-Mechanical Coupling Processes

3. WWAP- World Water Assessment Programme. The United Nations World Water Development Report 2015: Water for a Sustainable World. Paris: United Nations World Water Assessment Programme, UNESCO, 2015 http://unesdoc.unesco.org/images/0023/002318/231823E.pdf

4. Assessment of Heavy Metals Pollution and Stable Isotopic Signatures in Hard Rock Aquifers of Krishnagiri District, South India

5. Water Pollution from Agriculture: A Global Review;Mateo-Sagasta,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3