Numerical Simulation of a Debris Flow on the Basis of a Two-Dimensional Continuum Body Model

Author:

Takebayashi HiroshiORCID,Fujita Masaharu

Abstract

A two-dimensional debris and mud flow model that considers both laminar and turbulence flow was developed. Subsequently, the model was applied to a debris flow that occurred in Asaminami, Hiroshima, Japan in August 2014. The applicability of the model and the debris flow characteristics are discussed. The calculated horizontal distribution of sediment deposited in the Asaminami residential area was in good agreement with the horizontal distribution of the deposited large rocks and driftwood. This result indicates that the fine material in the downstream area was transported by water flow resulting from heavy rain that occurred after the debris flow. The scale of the initial debris flow was small; however, it increased with time, because eroded bed material and water were entrained to it. Therefore, it is important to reproduce the development process of debris flows to predict the amount of sediment produced, the deepest flow depth, the maximum flow velocity, and the inundation area. The averaged velocity of the simulated debris flow was about 9 m/s, and the velocity at the entrance to the residential area was about 8 m/s. This kind of information can be used to design sediment deposition dams. The travel time of the simulated debris flow from the upstream end of the main channel to the entrance of the residential area was 96 s. This kind of information can be used for making evacuation plans. Valley bed steps can suppress the deepest flow depth which is very important for the design of check dams; therefore, the high-resolution elevation data and fine numerical grids that reproduce step shapes are required to accurately calculate the deepest flow depth and maximum flow velocity.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3