Large Russian Lakes Ladoga, Onega, and Imandra under Strong Pollution and in the Period of Revitalization: A Review

Author:

Moiseenko TatianaORCID,Sharov AndreyORCID

Abstract

In this paper, retrospective analyses of long-term changes in the aquatic ecosystem of Ladoga, Onega, and Imandra lakes, situated within North-West Russia, are presented. At the beginning of the last century, the lakes were oligotrophic, freshwater and similar in origin in terms of the chemical composition of waters and aquatic fauna. Three stages were identified in this study: reference condition, intensive pollution and degradation, and decreasing pollution and revitalization. Similar changes in polluted bays were detected, for which a significant decrease in their oligotrophic nature, the dominance of eurybiont species, their biodiversity under toxic substances and nutrients, were noted. The lakes have been recolonized by northern species following pollution reduction over the past 20 years. There have been replacements in dominant complexes, an increase in the biodiversity of communities, with the emergence of more southern forms of introduced species. The path of ecosystem transformation during and after the anthropogenic stress compares with the regularities of ecosystem successions: from the natural state through the developmental stage to a more stable mature modification, with significantly different natural characteristics. A peculiarity of the newly formed ecosystems is the change in structure and the higher productivity of biological communities, explained by the stability of the newly formed biogeochemical nutrient cycles, as well as climate warming.

Funder

Ministry of Education and Science of the Russian Federation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference65 articles.

1. Development in Ecotoxicology;Butler;Ecol. Bull.,1984

2. The predict, validation, monitoring and migration of anthropogenic effect upon natural systems;Cairns;Environ. Aud.,1990

3. Ecotoxicology: A Hierarchical Treatment,1996

4. Ecotoxicology: Objectives, principles and perspectives

5. Principles of Ecotoxicology;Walker,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3