Satellite Pre-Failure Detection and In Situ Monitoring of the Landslide of the Tunnel du Chambon, French Alps

Author:

Desrues Mathilde,Lacroix PascalORCID,Brenguier Ombeline

Abstract

Recent studies using satellite data have shown a growing interest in detecting and anticipating landslide failures. However, their value for an actual landslide prediction has shown variable results. Therefore, the use of satellite images for that purpose still requires additional attention. Here, we study the landslide of the Tunnel du Chambon in the French Alps that ruptured in July 2015, generating major impacts on economic activity and infrastructures. To evaluate the contribution of very high-resolution optical satellite images to characterize and potentially anticipate the landslide failure, we conduct here a retro analysis of its evolution. Two time periods are analyzed: September 2012 to September 2014, and May to July 2015. We combine Pléiades optical images analysis and geodetic measurements from in situ topographic monitoring. Satellite images were correlated to detect pre-failure motions, showing 1.4-m of displacement between September 2012 and September 2014. In situ geodetic measures were used to analyze motions during the main activity of the landslide in June and July 2015. Topographic measurements highlight different areas of deformations and two periods of strong activity, related to the last stage of the tertiary creep and to anthropic massive purges of unstable masses. The law of acceleration toward the rupture observed in June and July 2015 over the topographic targets also fits well the satellite observation between 2012 and 2014, showing that the landslide probably already entered into tertiary creep 2.5 years before its failure.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference36 articles.

1. Expertise Relative aux Risques D’éboulement du Versant des Ruines de Séchilienne;Panet,2000

2. Identification and Mitigation of Large Landslide Risks in Europe: Advances in Risk Assessment;Bonnard,2014

3. The Séchilienne (France) landslide: a non-typical progressive failure implying major risks

4. Use of satellite remote sensing data in the mapping of global landslide susceptibility

5. Correlation of satellite image time-series for the detection and monitoring of slow-moving landslides

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3