Geochemical Biodegraded Oil Classification Using a Machine Learning Approach

Author:

Bispo-Silva Sizenando1ORCID,de Oliveira Cleverson J. Ferreira1,de Alemar Barberes Gabriel2ORCID

Affiliation:

1. Centro de Pesquisa e Desenvolvimento Leopoldo Américo Miguêz de Mello-CENPES, PDIEP-Gerência Geral de Pesquisa Desenvolvimento e Inovação, Departamento de Geoquímica do petróleo. Av. Horácio Macedo, 950-Cidade Universitária, CEP 21941915 Rio de Janeiro, RJ, Brazil

2. Geosciences Center, Department of earth Sciences, University of Coimbra, Rua Sílvio Lima S/n, 3030-790 Coimbra, Portugal

Abstract

Chromatographic oil analysis is an important step for the identification of biodegraded petroleum via peak visualization and interpretation of phenomena that explain the oil geochemistry. However, analyses of chromatogram components by geochemists are comparative, visual, and consequently slow. This article aims to improve the chromatogram analysis process performed during geochemical interpretation by proposing the use of Convolutional Neural Networks (CNN), which are deep learning techniques widely used by big tech companies. Two hundred and twenty-one chromatographic oil images from different worldwide basins (Brazil, the USA, Portugal, Angola, and Venezuela) were used. The open-source software Orange Data Mining was used to process images by CNN. The CNN algorithm extracts, pixel by pixel, recurring features from the images through convolutional operations. Subsequently, the recurring features are grouped into common feature groups. The training result obtained an accuracy (CA) of 96.7% and an area under the ROC (Receiver Operating Characteristic) curve (AUC) of 99.7%. In turn, the test result obtained a 97.6% CA and a 99.7% AUC. This work suggests that the processing of petroleum chromatographic images through CNN can become a new tool for the study of petroleum geochemistry since the chromatograms can be loaded, read, grouped, and classified more efficiently and quickly than the evaluations applied in classical methods.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3