Data-Driven Geothermal Reservoir Modeling: Estimating Permeability Distributions by Machine Learning

Author:

Suzuki AnnaORCID,Fukui Ken-ichiORCID,Onodera Shinya,Ishizaki Junichi,Hashida Toshiyuki

Abstract

Numerical modeling for geothermal reservoir engineering is a crucial process to evaluate the performance of the reservoir and to develop strategies for the future development. The governing equations in the geothermal reservoir models consist of several constitutive parameters, and each parameter is given to a large number of simulation grids. Thus, the combinations of parameters we need to estimate are almost limitless. Although several inverse analysis algorithms have been developed, determining the constitutive parameters in the reservoir model is still a matter of trial-and-error estimation in actual practice, and is largely based on the experience of the analyst. There are several parameters which control the hydrothermal processes in the geothermal reservoir modeling. In this study, as an initial challenge, we focus on permeability, which is one of the most important parameters for the modeling. We propose a machine-learning-based method to estimate permeability distributions using measurable data. A large number of learning data were prepared by a geothermal reservoir simulator capable of calculating pressure and temperature distributions in the natural state with different permeability distributions. Several machine learning algorithms (i.e., linear regression, ridge regression, Lasso regression, support vector regression (SVR), multilayer perceptron (MLP), random forest, gradient boosting, and the k-nearest neighbor algorithm) were applied to learn the relationship between the permeability and the pressure and temperature distributions. By comparing the feature importance and the scores of estimations, random forest using pressure differences as feature variables provided the best estimation (the training score of 0.979 and the test score of 0.789). Since it was learned independently of the grids and locations, this model is expected to be generalized. It was also found that estimation is possible to some extent, even for different heat source conditions. This study is a successful demonstration of the first step in achieving the goal of new data-driven geothermal reservoir engineering, which will be developed and enhanced with the knowledge of information science.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3