Affiliation:
1. Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
Abstract
A form of steel baffles, which is made of steel poles encased in concrete and embedded into the ground, are introduced in this article. This type of protective installation is to be located on previously identified/designed catchment at multiple levels up the hillslope to fence off large fallen boulders during landslides or rockfalls. These baffles are intended to serve as added-on protection to filter barriers (array of baffles) that have recently gained popularity as a means of filtering out coarse debris. The aforementioned protective devices are to be installed in strategic positions close to unstable rocks (noting that the velocity of impact can be much reduced at the upstream end of the rockfall trajectory). The proposed design involves only a simple hollow steel section, which is embedded into the ground. The installation process involves manually excavating a hole in the ground to accommodate the baffle, followed by backfilling with concrete. A straightforward calculation method, which is found on the established principles of structural dynamics and soil mechanics, has been developed to determine the section sizes and embedment depths for a given impact scenario. Based on the presented design procedure, a set of design charts have been developed for expediting the design and analysis process. The presented calculation methodology based on use of design charts have been validated by comparison with data generated by LS-DYNA simulations.
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献