An Investigation of Instability on Constant Shear Drained (CSD) Path under the CSSM Framework: A DEM Study

Author:

Nguyen Hoang Bao KhoiORCID,Rahman Md MizanurORCID,Karim Md RajibulORCID

Abstract

Soil liquefaction or instability, one of the most catastrophic phenomena, has attracted significant research attention in recent years. The main cause of soil liquefaction or instability is the reduction in the effective stress in the soil due to the build-up of pore water pressure. Such a phenomenon has often been thought to be related to the undrained shearing of saturated or nearly saturated sandy soils. Notwithstanding, many researchers also reported soil instability under a drained condition due to the reduction in lateral stress. This condition is often referred to as the constant shear drained (CSD) condition, and it is not uncommon in nature, especially in a soil slope. Even though several catastrophic dam failures have been attributed to CSD failure, the failure mechanisms in CSD conditions are not well understood, e.g., how the volumetric strain or effective stress changes at the triggering of flow deformation. Researchers often consider the soil fabric to be one of the contributors to soil behaviour and use this parameter to explain the failure mechanism of soil. However, the soil fabric is difficult to measure in conventional laboratory tests. Due to that reason, a numerical approach capable of capturing the soil fabric, the discrete element method (DEM), is used to investigate the CSD shearing mechanism. A series of simulations on 3D assemblies of ellipsoid particles was conducted. The DEM specimens exhibited instability behaviour when the effective stress paths nearly reached the critical state line. It can be clearly observed that the axial and volumetric strains changed suddenly when the stress states were close to the critical state line. Alongside these micromechanical observations, the study also presents deeper insights into soil behaviour by relating the macro-observations to the micromechanical aspect of the soil.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference82 articles.

1. On the Yielding of Soils;Roscoe;Géotechnique,1958

2. Schofield, A.N., and Wroth, P. (1968). Critical State Soil Mechanics, McGraw-Hill.

3. The critical state of sands;Been;Geotechnique,1991

4. On the measurement of critical state parameters of dense granular soils;Chu;Geotech. Test. J.,1993

5. Nor-Sand: A simple critical state model for sand;Jefferies;Géotechnique,1993

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3