Automatic Tsunami Hazard Assessment System: “Tsunami Observer”

Author:

Kolesov Sergey V.ORCID,Nosov Mikhail A.ORCID,Sementsov Kirill A.,Bolshakova Anna V.,Nurislamova Gulnaz N.

Abstract

The current prototype of a fully automatic earthquake tsunami hazard assessment system, “Tsunami Observer”, is described. The transition of the system to the active phase of operation occurs when information about a strong earthquake (Mw ≥ 6.0) is received. In the first stage, the vector field of coseismic displacements of the Earth’s crust is calculated by using the Okada formulas. In the calculations, use is made of data on the coordinates, the seismic moment, the focal mechanism, and the depth of the earthquake, as well as empirical patterns. In the second stage, the initial elevation of the water surface at the tsunami’s focus is determined with the vector field of coseismic displacements of the bottom and the distribution of ocean depths, and the earthquake’s potential energy is calculated. In the third stage, the intensity of the tsunami is estimated on the Soloviev–Imamura scale in accordance with the magnitude of the potential energy by using the empirical relationship that is obtained as a result of a statistical analysis of historical tsunami events. In the final stage, if the energy exceeds the critical value of 109 J, a numerical simulation of the tsunami is performed, which allows the determination of the predominant directions of wave energy propagation and estimation of the runup height on the nearest coast. In this work, data on the operation of the system over the last 3 years are presented.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference73 articles.

1. (2022). National Geophysical Data Center/World Data Service: NCEI/WDS Global Historical Tsunami Database, NOAA National Centers for Environmental Information.

2. Evolution of tsunami warning systems and products;Bernard;Phil. Trans. R. Soc. A,2015

3. Prediction of tsunami waves by uniform slip models;An;J. Geophys. Res. Ocean,2018

4. Processing center “Petropavlovsk” in seismic subsystem of Tsunami Warning System in Russian Far East in 2010–2018;Chebrov;Comput. Technol.,2019

5. Engel, M., Pilarczyk, J., May, S.M., Brill, D., and Garrett, E. (2020). Geological Records of Tsunamis and Other Extreme Waves, Elsevier.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3