A Calorimetric and Thermodynamic Investigation of the Synthetic Analogue of Mandarinoite, Fe2(SeO3)3∙5H2O

Author:

Lelet Maxim I.,Charykova Marina V.,Holzheid Astrid,Ledwig Brendan,Krivovichev Vladimir G.,Suleimanov Evgeny V.

Abstract

Thermophysical and thermochemical calorimetric investigations were carried out on the synthetic analogue of mandarinoite. The low-temperature heat capacity of Fe2(SeO3)3∙5H2O(cr) was measured using adiabatic calorimetry between 5.3 and 324.8 K, and the third-law entropy was determined. Using these Cp,mo(T) data, the third law entropy at T = 298.15 K, Smo, is calculated as 520.1 ± 1.1 J∙K–1∙mol–1. Smoothed Cp,moT values between T → 0 K and 320 K are presented, along with values for Smo and the functions [HmoT-Hmo0] and [ΦmoT-Φmo0]. The enthalpy of formation of Fe2(SeO3)3∙5H2O(cr) was determined by solution calorimetry with HF solution as the solvent, giving ΔfHmo(298 К, Fe2(SeO3)3∙5H2O, cr) = –3124.6 ± 5.3 kJ/mol. The standard Gibbs energy of formation for Fe2(SeO3)3∙5H2O(cr) at T = 298 K can be calculated on the basis on ΔfHmo(298 К) and ΔfSmo(298 К): ΔfGmo(298 К, Fe2(SeO3)3∙5H2O, cr) = ‒2600.8 ± 5.4 kJ/mol. The value of ΔfGm for Fe2(SeO3)3·5H2O(cr) was used to calculate the Eh–pH diagram of the Fe–Se–H2O system. This diagram has been constructed for the average contents of these elements in acidic waters of the oxidation zones of sulfide deposits. The behaviors of selenium and iron in the surface environment have been quantitatively explained by variations of the redox potential and the acidity-basicity of the mineral-forming medium. These parameters precisely determine the migration ability of selenium compounds and its precipitation in the form of solid phases.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3