Neonicotinoid Insecticide-Degrading Bacteria and Their Application Potential in Contaminated Agricultural Soil Remediation

Author:

Zeng Yuechun1,Sun Shaolin2,Li Pengfei2,Zhou Xian2,Wang Jian2

Affiliation:

1. Jiangsu DDBS Environmental Remediation Co., Ltd., Nanjing 210002, China

2. Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, Nanjing 210095, China

Abstract

Recent advances in the microbial degradation of persistent organic pollutants have the potential to mitigate the damage caused by anthropogenic activities that are harmfully impacting agriculture soil ecosystems and human health. In this paper, we summarize the pollution characteristics of neonicotinoid insecticides (NNIs) in agricultural fields in China and other countries and then discuss the existing research on screening for NNI-degrading functional bacterial strains, their degradation processes, the construction of microbial consortia, and strategies for their application. We explore the current needs and solutions for improving the microbial remediation rate of NNI-contaminated soil and how these solutions are being developed and applied. We highlight several scientific and technological advances in soil microbiome engineering, including the construction of microbial consortia with a broad spectrum of NNI degradation and microbial immobilization to improve competition with indigenous microorganisms through the provision of a microenvironment and niche suitable for NNI-degrading bacteria. This paper highlights the need for an interdisciplinary approach to improving the degradation capacity and in situ survival of NNI-degrading strains/microbial consortia to facilitate the remediation of NNI-contaminated soil using strains with a broad spectrum and high efficiency in NNI degradation.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3