Toxicity Assessment of 36 Herbicides to Green Algae: Effects of Mode of Action and Chemical Family

Author:

Li Simeng1ORCID,Mcintyre Hailey1

Affiliation:

1. Department of Civil Engineering, California State Polytechnic University, Pomona, CA 91768, USA

Abstract

Aquatic ecosystems can suffer inadvertent contamination from widely used herbicides. This study delves into the relative toxicity of 36 herbicides on green algae, exploring 11 distinct modes of action and 25 chemical structure classes. Through a 72-h algal growth inhibition test, it was found that herbicides targeting acetolactate synthase (ALS), photosystem II (PSII inhibitors), microtubule assembly, very-long-chain fatty acid (VLCFA) synthesis, and lipid synthesis exhibited high toxicity, with 72-h EC50 (half-maximal effective concentration) values ranging from 0.003 mg/L to 24.6 mg/L. Other pesticide types showed moderate to low toxicity, with EC50 values ranging from 0.59 mg/L to 143 mg/L. Interestingly, herbicides sharing the same mode of action but differing in chemical composition displayed significantly varied toxicity. For instance, penoxsulam and pyribenzoxim, both ALS inhibitors, demonstrated distinct toxicity levels. Similarly, terbuthylazine and bentazone, both PSII inhibitors, also exhibited differing toxicities. Notably, herbicides approved for rice cultivation showed lower toxicity to green algae compared to those intended for terrestrial plants. These data offer valuable insights for assessing the potential risks posed by these chemicals to aquatic organisms. Additionally, to prevent or minimize herbicide residual effects, modern management practices were reviewed to offer practical guidance.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3