Effects of Organic Amendments on Phenol Oxidase, Peroxidase, Urease, and Nitrogen Mineralization: A Laboratory Incubation Study

Author:

Leaseburg Emma E.,Lei Lili,Fink Linda S.

Abstract

Mitigating climate change and enhancing fertility in agricultural systems require the adoption of more sustainable fertilizer management practices. Applications of recycled organic materials, such as animal and green wastes, can promote soil carbon stabilization via changing extracellular enzyme activities while providing the necessary nitrogen (N) for plant growth. The goals of this study were to quantify the effects of compost type (cow manure, green manures, mixtures of green and cow manure at various proportions, and inorganic fertilizers) on (1) enzyme activity (phenol oxidase, peroxidase, and urease), and (2) mineralized N under laboratory incubation at 30 °C over an eight-week period. The lowest oxidative enzyme activities (phenol oxidase and peroxidase) were found in the soil treated with a mixture of 50% cow manure and 50% green manure (2.45 μmol h−1 g−1) and a mixture of 30% cow manure and 70% green manure (3.21 μmol h−1 g−1) compared to all other fertilizer treatments. The highest phenol oxidase activity was found in soils amended with green manures (3.52 μmol h−1 g−1), while the highest peroxidase activity was found in soils amended with a mixture of 70% cow manure and 30% green manure (5.68 μmol h−1 g−1). No significant differences were found in total net mineralized N content among all organic fertilizer treatments, but these were significantly lower than total net mineralized N in soil treated with inorganic fertilizers. These results indicate similar effects of organic amendments and mixtures in providing plant-available N, but different effects on lignin-degrading enzyme activities, which may lead to differences in soil organic carbon cycling and long-term C storage depending on which organic amendment is utilized.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3