Optimized Sensor Placement of Water Supply Network Based on Multi-Objective White Whale Optimization Algorithm

Author:

Guan Yihong1ORCID,Lv Mou1ORCID,Li Shuyan2,Su Yanbo1,Dong Shen1

Affiliation:

1. School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, China

2. Zhonglian Northwest Engineering Design and Research Institute Co., Xi’an 710076, China

Abstract

The optimization of sensor locations in water distribution networks has been extensively studied. Previous studies of highly sensitive nodes are usually distributed in a certain area, which leads to redundant information in the sensor network. This is because these studies do not consider that the impact is different when a leak occurs in different nodes. In this study, sensitivity functions of different nodes were obtained according to the influence of the leakage of each node on the water distribution network. Combined with the water pressure correlation and water pressure sensitivity between nodes, the monitoring range of monitoring points and the water demand of covering nodes of monitoring points were taken as objective functions to build an optimal layout model. Taking a pipeline network in Qingdao as an example, the model was solved by using multi-objective White Whale Optimization and NSGA-II. By comparing the operation results of the four cases, it was found that the monitoring points found using multi-objective White Whale Optimization show better searching ability in terms of the sensitivity functions of different nodes.

Funder

National Natural Science Foundation of China

Key Technology Research and Development Program of Shandong

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3