An Intelligent Bio-Inspired Autonomous Surveillance System Using Underwater Sensor Networks

Author:

Khan Shadab1,Singh Yash Veer2,Yadav Prasant Singh3ORCID,Sharma Vishnu2,Lin Chia-Chen4ORCID,Jung Ki-Hyun5ORCID

Affiliation:

1. Department of Computer Science & Engineering, ABES Engineering College, Ghaziabad 201009, India

2. Department of Computer Science & Engineering, Galgotias College of Engineering and Technology, Greater Noida 201310, India

3. Department of Computer Science and Engineering, Mahamaya Polytechnic of Information Technology (Govt.), Hathras 204102, India

4. Department of Computer Science and Information Engineering, National Chin-Yi University, No.57, Sec. 2, Zhongshan Rd., Taiping Dist., Taichung 411030, Taiwan

5. Department of Software Convergence, Andong National University, Andong 36729, Republic of Korea

Abstract

Energy efficiency is important for underwater sensor networks. Designing such networks is challenging due to underwater environmental traits that hinder network lifespan extension. Unlike terrestrial protocols, underwater settings require novel protocols due to slower signal propagation. To enhance energy efficiency in underwater sensor networks, ongoing research concentrates on developing innovative solutions. Thus, in this paper, an intelligent bio-inspired autonomous surveillance system using underwater sensor networks is proposed as an efficient method for data communication. The tunicate swarm algorithm is used for the election of the cluster heads by considering different parameters such as energy, distance, and density. Each layer has several clusters, each of which is led by a cluster head that continuously rotates in response to the fitness values of the SNs using the tunicate swarm algorithm. The performance of the proposed protocol is compared with existing methods such as EE-LHCR, EE-DBR, and DBR, and results show the network’s lifespan is improved by the proposed work. Due to the effective fitness parameters during cluster head elections, our suggested protocol may more effectively achieve energy balance, resulting in a longer network lifespan.

Funder

NSTC, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3