Improved VMD-ELM Algorithm for MEMS Gyroscope of Temperature Compensation Model Based on CNN-LSTM and PSO-SVM

Author:

Wang Xinwang,Cao HuiliangORCID

Abstract

The micro-electro-mechanical system (MEMS) gyroscope is a micro-mechanical gyroscope with low cost, small volume, and good reliability. The working principle of the MEMS gyroscope, which is achieved through Coriolis, is different from traditional gyroscopes. The MEMS gyroscope has been widely used in the fields of micro-inertia navigation systems, military, automotive, consumer electronics, mobile applications, robots, industrial, medical, and other fields in micro-inertia navigation systems because of its advantages of small volume, good performance, and low price. The material characteristics of the MEMS gyroscope is very significant for its data output, and the temperature determines its accuracy and limits its further application. In order to eliminate the effect of temperature, the MEMS gyroscope needs to be compensated to improve its accuracy. This study proposed an improved variational modal decomposition—extreme learning machine (VMD-ELM) algorithm based on convolutional neural networks—long short-term memory (CNN-LSTM) and particle swarm optimization—support vector machines (PSO-SVM). By establishing a temperature compensation model, the gyro temperature output signal is optimized and reconstructed, and the gyro output signal with better accuracy is obtained. The VMD algorithm separates the gyro output signal and divides the gyro output signal into low-frequency signals, mid-frequency signals, and high-frequency signals according to the different signal frequencies. Once again, the PSO-SVM model is constructed by the mid-frequency temperature signal to find the temperature error. Finally, the signal is reconstructed through the ELM neural network algorithm, and then, the gyro output signal after noise is obtained. Experimental results show that, by using the improved method, the output of the MEMS gyroscope ranging from −40 to 60 °C reduced, and the temperature drift dramatically declined. For example, the factor of quantization noise (Q) reduced from 1.2419 × 10−4 to 1.0533 × 10−6, the factor of bias instability (B) reduced from 0.0087 to 1.8772 × 10−4, and the factor of random walk of angular velocity (N) reduced from 2.0978 × 10−5 to 1.4985 × 10−6. Furthermore, the output of the MEMS gyroscope ranging from 60 to −40 °C reduced. The factor of Q reduced from 2.9808 × 10−4 to 2.4430 × 10−6, the factor of B reduced from 0.0145 to 7.2426 × 10−4, and the factor of N reduced from 4.5072 × 10−5 to 1.0523 × 10−5. The improved algorithm can be adopted to denoise the output signal of the MEMS gyroscope to improve its accuracy.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Technology Field Fund of Basic Strengthening Plan of China

National defense basic scientific research program

Pre-Research Field Foundation of Equipment Development Department of China

Fundamental Research Program of Shan-xi Province

Shanxi province key laboratory of quantum sensing and precision measurement

Key Research and Development (R&D) Projects of Shanxi Province

Aeronautical Science Foundation of China

National Natural Science Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DNTC: An unsupervised Deep Networks for Temperature Compensation in non-stationary data;Engineering Applications of Artificial Intelligence;2024-01

2. Research on Resistance Current Forecast Model of Lightning Arrester Based on VMD-ELM-AEFA Combination;2023 6th International Conference on Power and Energy Applications (ICPEA);2023-11-24

3. Enhancing FOG Temperature Compensation using LSTM Method;2023 42nd Chinese Control Conference (CCC);2023-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3