A New Approach of Modelling Bottom Edge Cutting in 4-Axis Rough Milling of Complex Parts and Its Application on Feed Rate Optimization

Author:

Zhao Jie,Chang Zhiyong

Abstract

Complex mechanical parts such as a blisk of aero-engines are commonly used in aerospace industry. These parts are complex in shape and their rough machining are conducted in 4-axis machine tools with end mills. The end mills are fully engaged into the workpiece material to be removed. Because of the complex cutter motion in 4-axis milling, the bottom edges of the end mills are involved in cutting with high possibility, resulting in an undesirable increase of cutting forces, tool deflection, and quick tool wear. To address this technical challenge, an analytical method is proposed to identify and evaluate the bottom edge cutting in 4-axis milling in this work. The motion of the cutter’s tool tip with respect to the workpiece is analyzed and the equations are formulated based on a basic interpolation algorithm. An approach to identifying and evaluating the bottom edge cutting is proposed. The increment of the cutting forces caused by the bottom edge cutting is taken into consideration to precisely evaluate the overall cutting forces. A feed rate optimization model is then established to control the cutting forces. The simulation and the experiment of rough milling of a blisk verify that the bottom edge cutting can be identified and the cutting force can be controlled by optimizing the feed rates without losing much machining efficiency.

Funder

Defense Industrial Technology Development Program

Shaanxi Province Major R&D Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference13 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electrochemical machining of titanium alloy blades using optimized cathode with built-in insulators;Materials and Manufacturing Processes;2024-06-10

2. Research on cutting tool edge geometry design based on SVR-PSO;The International Journal of Advanced Manufacturing Technology;2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3