Multivariable Decoupling and Nonlinear Correction Method for Image-Based Closed-Loop Tracking of the Risley Prisms System

Author:

Xia Huayang,Li Jinying,Xia YunxiaORCID,Yuan Liangzhu,Zhang Wenxue,Ma Haotong,Wen Piao

Abstract

Image-based closed-loop tracking (IBCLT) is an important part of the process of target tracking. The Risley prism system has a unique advantage in improving the target tracking ability because of its compact and lightweight structure. Compared with traditional target tracking equipment, the Risley prism system has two difficulties in the process of IBCLT. First, the Risley prism is a complex coupling system of double input and double output. Second, the Risley prism itself is a nonlinear system. These problems lead to decrease in dynamic response and inconsistent target tracking capabilities. Thus, this paper proposes a method to implement multivariable decoupling and reduce the nonlinear effect. First, the boresight error of IBCLT is decoupled to the azimuth and elevation directions by the rotation matrix error-decoupling (RMED) method. Second, the gains of IBCLT in azimuth and elevation directions are independent variables that comes from two functions of the target elevation angle. The experimental results show that the IBCLT error deviation of different static targets in the field of view is within 0.025 arcsec, which is 70% lower compared with the fixed gain method. Furthermore, the steady-state error deviation of moving targets is controlled within 2.5 arcsec. These experimental results prove the feasibility and effectiveness of the proposed method.

Funder

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Institute of Optics and Electronics, Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3