Rapid Customization and Manipulation Mechanism of Micro-Droplet Chip for 3D Cell Culture

Author:

Liu Haiqiang,Yang Chen,Wang Bangbing

Abstract

A full PDMS micro-droplet chip for 3D cell culture was prepared by using SLA light-curing 3D printing technology. This technology can quickly customize various chips required for experiments, saving time and capital costs for experiments. Moreover, an injection molding method was used to prepare the full PDMS chip, and the convex mold was prepared by light-curing 3D printing technology. Compared with the traditional preparation process of micro-droplet chips, the use of 3D printing technology to prepare micro-droplet chips can save manufacturing and time costs. The different ratios of PDMS substrate and cover sheet and the material for making the convex mold can improve the bonding strength and power of the micro-droplet chip. Use the prepared micro-droplet chip to carry out micro-droplet forming and manipulation experiments. Aimed to the performance of the full PDMS micro-droplet chip in biological culture was verified by using a solution such as chondrocyte suspension, and the control of the micro-droplet was achieved by controlling the flow rate of the dispersed phase and continuous phase. Experimental verification shows that the designed chip can meet the requirements of experiments, and it can be observed that the micro-droplets of sodium alginate and the calcium chloride solution are cross-linked into microspheres with three-dimensional (3D) structures. These microspheres are fixed on a biological scaffold made of calcium silicate and polyvinyl alcohol. Subsequently, the state of the cells after different time cultures was observed, and it was observed that the chondrocytes grew well in the microsphere droplets. The proposed method has fine control over the microenvironment and accurate droplet size manipulation provided by fluid flow compared to existing studies.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3