Modelling Soil Organic Carbon as a Function of Topography and Stand Variables

Author:

Malla Rajesh,Neupane Prem Raj,Köhl MichaelORCID

Abstract

Soil organic carbon (SOC) plays a crucial role in global carbon cycling. The amount of SOC is influenced by many factors (climate, topography, forest type, forest disturbance, etc.). To investigate this potential effect, we performed a multiple regression model using six different predictor variables in the third national-level forest resource assessment data of Nepal. We found a significant correlation between the SOC and altitude (r = 0.76) followed by crown cover and slope. The altitude alone explains r2 = 58 percent of the variability of the SOC and shows an increasing rate of change of SOC with the increase of altitude. Altitude was identified as a suitable predictor of SOC for large areas with high altitudinal variation followed by crown cover and slope. Increasing amounts of SOC with increasing altitude shows the significance of high-altitude forests in the perspective of climate change mitigation. Altitude, a proxy of temperature, provides insights into the influence of changing temperature patterns on SOC due to future climate change. Further study on forest types and SOC along the altitudinal gradient in Nepal is recommended to deal with the climate change problem in the future.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Forestry

Reference86 articles.

1. IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry,2003

2. A segregated assessment of total carbon stocks by the mode of origin and ecological functions of forests: Implication on restoration potential;Neupane;Int. For. Rev.,2017

3. Organic and inorganic carbon in the topsoil of the Mongolian and Tibetan grasslands: pattern, control and implications

4. Light and Heavy Fractions of Soil Organic Matter in Response to Climate Warming and Increased Precipitation in a Temperate Steppe

5. Soil Carbon Storage: Modulators, Mechanisms and Modeling;Singh,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3