Minimizing Energy Depletion Using Extended Lifespan: QoS Satisfied Multiple Learned Rate (ELQSSM-ML) for Increased Lifespan of Mobile Adhoc Networks (MANET)

Author:

Rajagopal Manikandan1ORCID,Sivasakthivel Ramkumar2ORCID,Venugopal Jeyakrishnan3ORCID,Sarris Ioannis E.4ORCID,Loganathan Karuppusamy5ORCID

Affiliation:

1. Department of Lean Operations and Systems, School of Business and Management, CHRIST, Bengaluru 560001, Karnataka, India

2. Department of Computer Science, School of Sciences, CHRIST, Bengaluru 560001, Karnataka, India

3. Department of Computer Science and Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India

4. Department of Mechanical Engineering, University of West Attica, 250 Thivon & P. Ralli Str., Egaleo, 12244 Athens, Greece

5. Department of Mathematics and Statistics, Manipal University Jaipur, Jaipur 303007, Rajasthan, India

Abstract

Mobile Adhoc Networks (MANETs) typically employ with the aid of new technology to increase Quality-of-Service (QoS) when forwarding multiple data rates. This kind of network causes high forwarding delays and improper data transfer rates because of the changes in the node’s vicinity. Although an optimized routing technique to transfer energy has been used to lessen the delay and improve the throughput by assigning a proper data rate, it does not consider the objective of minimizing the energy use, which results in less network lifetime. The goal of the proposed work is to minimize the energy depletion in a MANET, which results in an extended Lifespan of the network. In this research paper, an Extended Life span and QSSM-ML routing algorithm is proposed, which minimizes energy use and enhances the network lifetime. First, an optimization problem is formulated with the purpose of increasing the network’s lifetime while limiting the energy utilization and stability of the path along with residual. Second, an adaptive policy is applied for the asymmetric distribution of energy at both origin and intermediate nodes. In order to achieve maximum network lifespan and minimal energy depletion, the optimization problem was framed when power usage is a constraint by allowing the network to make use of the leftover power. An asymmetric energy transmission strategy was also designed for the adaptive allocation of maximum transmission energy in the origin. This made the network lifespan extended with the help of reducing the node’s energy use for broadcasting the data from the origin to the target. Moreover, the node’s energy use during packet forwarding is reduced to recover the network lifetime. The overall benefit of the proposed work is that it can achieve both minimal energy depletion and maximizes the lifetime of the network. Finally, the simulation findings reveal that the ELQSSM-ML algorithm accomplishes a better network performance than the classical algorithms.

Publisher

MDPI AG

Subject

Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal Management of Resources in Cloud Infrastructure through Energy Aware Collaborative Model;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09

2. An adaptive congestion and energy aware multipath routing scheme for mobile ad-hoc networks through stable link prediction;Measurement: Sensors;2023-12

3. Area and Energy Efficient Method Using AI for Noise Cancellation in Ear Phones;2023 International Conference on Self Sustainable Artificial Intelligence Systems (ICSSAS);2023-10-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3