Adaptive Kernel Graph Nonnegative Matrix Factorization

Author:

Li Rui-Yu1ORCID,Guo Yu1ORCID,Zhang Bin12ORCID

Affiliation:

1. School of Software, Xi’an Jiaotong University, Xi’an 710049, China

2. Zhengzhou Key Laboratory of Intelligent Assembly Manufacturing and Logistics Optimization, Zhengzhou College of Finance and Economics, Zhengzhou 450053, China

Abstract

Nonnegative matrix factorization (NMF) is an efficient method for feature learning in the field of machine learning and data mining. To investigate the nonlinear characteristics of datasets, kernel-method-based NMF (KNMF) and its graph-regularized extensions have received much attention from various researchers due to their promising performance. However, the graph similarity matrix of the existing methods is often predefined in the original space of data and kept unchanged during the matrix-factorization procedure, which leads to non-optimal graphs. To address these problems, we propose a kernel-graph-learning-based, nonlinear, nonnegative matrix-factorization method in this paper, termed adaptive kernel graph nonnegative matrix factorization (AKGNMF). In order to automatically capture the manifold structure of the data on the nonlinear feature space, AKGNMF learned an adaptive similarity graph. We formulated a unified objective function, in which global similarity graph learning is optimized jointly with the matrix decomposition process. A local graph Laplacian is further imposed on the learned feature subspace representation. The proposed method relies on both the factorization that respects geometric structure and the mapped high-dimensional subspace feature representations. In addition, an efficient iterative solution was derived to update all variables in the resultant objective problem in turn. Experiments on the synthetic dataset visually demonstrate the ability of AKGNMF to separate the nonlinear dataset with high clustering accuracy. Experiments on real-world datasets verified the effectiveness of AKGNMF in three aspects, including clustering performance, parameter sensitivity and convergence. Comprehensive experimental findings indicate that, compared with various classic methods and the state-of-the-art methods, the proposed AKGNMF algorithm demonstrated effectiveness and superiority.

Funder

Key Research and Development Program of Shaanxi

Key Research and Development Program of Henan

Publisher

MDPI AG

Subject

Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3