SEMKIS-DSL: A Domain-Specific Language to Support Requirements Engineering of Datasets and Neural Network Recognition

Author:

Jahić Benjamin1ORCID,Guelfi Nicolas1ORCID,Ries Benoît1ORCID

Affiliation:

1. Department of Computer Science, Faculty of Science, Université du Luxembourg, Technology and Medecine, Campus Belval, L-4365 Esch-sur-Alzette, Luxembourg

Abstract

Neural network (NN) components are being increasingly incorporated into software systems. Neural network properties are determined by their architecture, as well as the training and testing datasets used. The engineering of datasets and neural networks is a challenging task that requires methods and tools to satisfy customers’ expectations. The lack of tools that support requirements specification languages makes it difficult for engineers to describe dataset and neural network recognition skill requirements. Existing approaches often rely on traditional ad hoc approaches, without precise requirement specifications for data selection criteria, to build these datasets. Moreover, these approaches do not focus on the requirements of the neural network’s expected recognition skills. We aim to overcome this issue by defining a domain-specific language that precisely specifies dataset requirements and expected recognition skills after training for an NN-based system. In this paper, we present a textual domain-specific language (DSL) called SEMKIS-DSL (Software Engineering Methodology for the Knowledge management of Intelligent Systems) that is designed to support software engineers in specifying the requirements and recognition skills of neural networks. This DSL is proposed in the context of our general SEMKIS development process for neural network engineering. We illustrate the DSL’s concepts using a running example that focuses on the recognition of handwritten digits. We show some requirements and recognition skills specifications and demonstrate how our DSL improves neural network recognition skills.

Publisher

MDPI AG

Subject

Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3