A Point Cloud Simplification Algorithm Based on Weighted Feature Indexes for 3D Scanning Sensors

Author:

Shi ZhiyuanORCID,Xu Weiming,Meng Hao

Abstract

Conventional point cloud simplification algorithms have problems including nonuniform simplification, a deficient reflection of point cloud characteristics, unreasonable weight distribution, and high computational complexity. A simplification algorithm, namely, the multi-index weighting simplification algorithm (MIWSA), is proposed in this paper. First, the point cloud is organized with a bounding box and kd-trees to find the neighborhood of each point, and the points are divided into small segments. Second, the feature index of each point is calculated to indicate the characteristics of the points. Third, the analytic hierarchy process (AHP) and criteria importance through intercriteria correlation (CRITIC) are applied to weight these indexes to determine whether each point is a feature point. Fourth, non-feature points are judged as saved or abandoned according to their spatial relationship with the feature points. To verify the effect of the MIWSA, 3D model scanning datasets are calculated and analyzed, as well as field area scanning datasets. The accuracy for the 3D model scanning datasets is assessed by the surface area and patch numbers of the encapsulated surfaces, and that for field area scanning datasets is evaluated by the DEM error statistics. Compared with existing algorithms, the overall accuracy of the MIWSA is 5% to 15% better. Additionally, the running time is shorter than most. The experimental results illustrate that the MIWSA can simplify point clouds more precisely and uniformly.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 3D Point Clouds Simplification Based on Low-dimensional Contour FeatureExtraction;Proceedings of the 2024 2nd Asia Conference on Computer Vision, Image Processing and Pattern Recognition;2024-04-26

2. A Color- and Geometric-Feature-Based Approach for Denoising Three-Dimensional Cultural Relic Point Clouds;Entropy;2024-04-05

3. Fast subsampling strategy for point cloud based on novel octree coding;Measurement Science and Technology;2024-01-25

4. Adaptive coarse-to-fine clustering and terrain feature-aware-based method for reducing LiDAR terrain point clouds;ISPRS Journal of Photogrammetry and Remote Sensing;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3