Individualized Tour Route Plan Algorithm Based on Tourist Sight Spatial Interest Field

Author:

Zhou ,Zhan ,Feng ,Zhang ,Li

Abstract

Smart tourism is the new frontier field of the tourism research. To solve current problems of smart tourism and tourism geographic information system (GIS), individualized tour guide route plan algorithm based on tourist sight spatial interest field is set up in the study. Feature interest tourist sight extracting matrix is formed and basic modeling data is obtained from mass tourism data. Tourism groups are determined by age index. Different age group tourists have various interests; thus interest field mapping model is set up based on individual needs and interests. Random selecting algorithm for selecting interest tourist sights by smart machine is designed. The algorithm covers all tourist sights and relative data information to ensure each tourist sight could be selected equally. In the study, selected tourist sights are set as important nodes while iteration intervals and sub-iteration intervals are defined. According to the principle of proximity and completely random, motive iteration clusters and sub-clusters are formed by all tourist sight parent nodes. Tourist sight data information and geospatial information are set as quantitative indexes to calculate motive iteration values and motive iteration decision trees of each cluster are formed, and then all motive iteration values are stored in descending order in a vector. For each cluster, there is an optimal motive iteration tree and a local optimal solution. For all clusters, there is a global optimal solution. Simulation experiments are performed and results data as well as motive iteration trees are analyzed and evaluated. The evaluation results indicate that the algorithm is effective for mass tourism data mining. The final optimal tour routes planned by the smart machine are closely related to tourists’ needs, interests, and habits, which are fully integrated with geospatial services. The algorithm is an effective demonstration of the application on mass tourism data mining.

Funder

Shaomei Li

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3