Dynamic Wildfire Navigation System

Author:

Ozaki Mitsuhiro,Aryal JagannathORCID,Fox-Hughes PaulORCID

Abstract

Wildfire, a natural part of many ecosystems, has also resulted in significant disasters impacting ecology and human life in Australia. This study proposes a prototype of fire propagation prediction as an extension of preceding research; this system is called “Cloud computing based bushfire prediction”, the computational performance of which is expected to be about twice that of the traditional client-server (CS) model. As the first step in the modelling approach, this prototype focuses on the prediction of fire propagation. The direction of fire is limited in regular grid approaches, such as cellular automata, due to the shape of the uniformed grid, while irregular grids are freed from this constraint. In this prototype, fire propagation is computed from a centroid regardless of grid shape to remove the above constraint. Additionally, the prototype employs existing fire indices, including the Grassland Fire Danger Index (GFDI), Forest Fire Danger Index (FFDI) and Button Grass Moorland Fire Index (BGML). A number of parameters, such as Digital Elevation Model (DEM) and forecast weather data, are prepared for use in the calculation of the indices above. The fire study area is located around Lake Mackenzie in the central north of Tasmania where a fire burnt approximately 247.11 km 2 in January 2016. The prototype produces nine different prediction results with three polygon configurations, including Delaunay Triangulation, Square and Voronoi, using three different resolutions: fine, medium and coarse. The Delaunay Triangulation, which has the greatest number of adjacent grids among three shapes of polygon, shows the shortest elapsed time for spread of fire compared to other shapes. The medium grid performs the best trade-off between cost and time among the three grain sizes of prediction polygons, and the coarse size shows the best cost-effectiveness. A staging approach where coarse size prediction is released initially, followed by a medium size one, can be a pragmatic solution for the purpose of providing timely evacuation guidance.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference50 articles.

1. The Northern California Wildfires of 8–9 October 2017: The Role of a Major Downslope Wind Event

2. BBC Portugal Forest Fires Kill 62 Near Coimbra http://www.bbc.com/news/world-europe-40316934

3. Anatomy of a catastrophic wildfire: The Black Saturday Kilmore East fire in Victoria, Australia

4. A re-examination of the synoptic and mesoscale meteorology of Ash Wednesday 1983;Mills;Aust. Meteorol. Mag.,2005

5. A fire danger climatology for Tasmania;Fox-Hughes;Aust. Meteorol. Mag.,2008

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3