Research on Chinese Nested Entity Recognition Based on IDCNNLR and GlobalPointer

Author:

Li Weijun12ORCID,Liu Jintong1,Gao Yuxiao1,Zhang Xinyong1,Gu Jianlai1

Affiliation:

1. School of Computer Science and Engineering, North Minzu University, Yinchuan 750021, China

2. State Ethnic Affairs Commission Key Laboratory of Graphic Image Intelligent Processing, North Minzu University, Yinchuan 750021, China

Abstract

The task of named entity recognition (NER) is to identify entities in the text and predict their categories. In real-life scenarios, the context of the text is often complex, and there may exist nested entities within an entity. This kind of entity is called a nested entity, and the task of recognizing entities with nested structures is referred to as nested named entity recognition. Most existing NER models can only handle flat entities, and there has been limited research progress in Chinese nested named entity recognition, resulting in relatively few models in this direction. General NER models have limited semantic extraction capabilities and cannot capture deep semantic information between nested entities in the text. To address these issues, this paper proposes a model that uses the GlobalPointer module to identify nested entities in the text and constructs the IDCNNLR semantic extraction module to extract deep semantic information. Furthermore, multiple-head self-attention mechanisms are incorporated into the model at multiple positions to achieve data denoising, enhancing the quality of semantic features. The proposed model considers each possible entity boundary through the GlobalPointer module, and the IDCNNLR semantic extraction module and multi-position attention mechanism are introduced to enhance the model’s semantic extraction capability. Experimental results demonstrate that the proposed model achieves F1 scores of 69.617% and 79.285% on the CMeEE Chinese nested entity recognition dataset and CLUENER2020 Chinese fine-grained entity recognition dataset, respectively. The model exhibits improvement compared to baseline models, and each innovation point shows effective performance enhancement in ablative experiments.

Funder

Ningxia Natural Science Foundation Project

Basic Scientific Research in Central Universities of North Minzu University

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3