Tolerance of Rare-Earth Elements in Extremophile Fungus Umbelopsis isabellina from Polar Loparite Ore Tailings in Northwestern Russia

Author:

Shumilov Oleg I.1,Kasatkina Elena A.1ORCID,Kirtsideli Irina Y.2,Makarov Dmitry V.1

Affiliation:

1. Institute of North Industrial Ecology Problems, Kola Science Centre, Russian Academy of Sciences, 184209 Apatity, Russia

2. Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia

Abstract

In this study, extremophile fungal species isolated from pure loparite-containing sands and their tolerance/resistance to the lanthanides Ce and Nd were investigated. The loparite-containing sands were collected at the tailing dumps of an enterprise developing a unique polar deposit of niobium, tantalum and rare-earth elements (REEs) of the cerium group: the Lovozersky Mining and Processing Plant (MPP), located in the center of the Kola Peninsula (northwestern Russia). From the 15 fungal species found at the site, one of the most dominant isolates was identified by molecular analysis as the zygomycete fungus Umbelopsis isabellina (GenBank accession no. OQ165236). Fungal tolerance/resistance was evaluated using different concentrations of CeCl3 and NdCl3. Umbelopsis isabellina exhibited a higher degree of tolerance/resistance to cerium and neodymium than did the other dominant isolates (Aspergillus niveoglaucus, Geomyces vinaceus and Penicillium simplicissimum). The fungus began to be inhibited only after being exposed to 100 mg L−1 of NdCl3. The toxic effects of Ce were not observed in fungus growth until it was subjected to 500 mg∙L−1 of CeCl3. Moreover, only U. isabellina started to grow after extreme treatment with 1000 mg∙L−1 of CeCl3 one month after inoculation. This work indicates, for the first time, the potential of Umbelopsis isabellina to remove REEs from the loparite ore tailings, making it a suitable candidate for the development of bioleaching methods.

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3