Establishment of a CRISPR/Cas9-Mediated Efficient Knockout System of Trichoderma hamatum T21 and Pigment Synthesis PKS Gene Knockout

Author:

Luo Ning12,Li Zeyu2,Ling Jian2,Zhao Jianlong2ORCID,Li Yan2ORCID,Yang Yuhong2,Mao Zhenchuan2,Xie Bingyan2,Li Huixia1,Jiao Yang2

Affiliation:

1. Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China

2. State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Abstract

Trichoderma hamatum is a filamentous fungus that serves as a biological control agent for multiple phytopathogens and as an important resource promising for fungicides. However, the lack of adequate knockout technologies has hindered gene function and biocontrol mechanism research of this species. This study obtained a genome assembly of T. hamatum T21, with a 41.4 Mb genome sequence comprising 8170 genes. Based on genomic information, we established a CRISPR/Cas9 system with dual sgRNAs targets and dual screening markers. CRISPR/Cas9 plasmid and donor DNA recombinant plasmid were constructed for disruption of the Thpyr4 and Thpks1 genes. The result indicates the consistency between phenotypic characterization and molecular identification of the knockout strains. The knockout efficiencies of Thpyr4 and Thpks1 were 100% and 89.1%, respectively. Moreover, sequencing revealed fragment deletions between dual sgRNA target sites or GFP gene insertions presented in knockout strains. The situations were caused by different DNA repair mechanisms, nonhomologous end joining (NHEJ), and homologous recombination (HR). Overall, we have successfully constructed an efficient and convenient CRISPR/Cas9 system in T. hamatum for the first time, which has important scientific significance and application value for studies on functional genomics of Trichoderma and other filamentous fungi.

Funder

National Key R&D Program of China

China Agriculture Research System

National Agriculture Science and Technology Major Program

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3