The Application of Machine Learning Methods to Predict the Power Output of Internal Combustion Engines

Author:

Yang Ruomiao,Xie Tianfang,Liu Zhentao

Abstract

The indicated mean effective pressure (IMEP) is a key parameter for measuring the power output of an internal combustion engine (ICE). This indicator can be used to locate the high efficiency regions of engines. Therefore, it makes sense to predict the IMEP based on the machine learning (ML) approaches. However, different ML models are applicable to different scenarios, so it is important to choose the right model for prediction. The objective of this paper was to compare three ML models’ (ANN, SVR, RF) predictive performance in forecasting IMEP indicator with the input parameters spark timing (ST), speed and load. A validated one-dimensional (1D) computational fluid dynamics (CFD) model was employed to provide 756 sets of data for the training, validation, and testing of the model. The results indicated that the random forest (RF) model had the worst prediction performance, and support vector regression (SVR) had a slightly better prediction performance than the artificial neural network (ANN), at least for the investigations in this study. Overall, the ANN and SVR models showed good predictive performance for IMEP, as the coefficient of determination (R2) was close to unity, and the root mean squared error (RMSE) was close to zero. Whereas the overall prediction results of the RF model are acceptable, the RF model does not learn well for some internal engine laws.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3